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Abstract
Stochastic gradient methods are increasingly employed in statistical inference tasks, such as pa-

rameter and interval estimation. Yet, much of the current theoretical framework mainly revolves
around scenarios with i.i.d. observations or strongly convex objectives, bypassing more complex
models. To address this gap, our paper delves into the challenges posed by correlated stream data
and the inherent intricacies of the non-convex landscapes in neural network applications. In this
context, we present SHADE (Stochastic Hidden Averaging Data Estimator), a novel mini-batch gra-
dient based estimator. We further substantiate its asymptotic normality through a tailored central
limit theorem designed explicitly for its average scheme. From a technical perspective, our analysis
integrates recent advancements in composite (hidden) convex optimization, stochastic processes, and
dynamical systems.

1 Introduction

Nowadays we witness a surge in large-scale data-driven techniques, encompassing areas such as machine
learning, statistical methodologies, and operational research [Council et al., 2013]. However, as these
analytical tools gain prominence in areas with significant implications for individuals, like drug discovery
and vaccine approval, there is an increasing realization that machine learning models, when used merely
as “black boxes” for predictive purposes, could lead to hazardous misconceptions. For instance, consider
FDA’s surveillance models about adverse reactions for new CoViD-19 vaccines or drugs [Arora et al.,
2021, McMurry et al., 2021]. In a simplified realizable scenario, such a model might evaluate two pa-
rameters ω1 (reaction severity) and ω2 (elapsed time since administration) and there exists an unknown
parameter θ∗ such that yθ∗ ∼ L(θ∗; (ω1, ω2)) might describe the likelihood of hospitalizations for a given
adverse reaction. Notably, while multiple θ could optimize prediction accuracy, like E(ω1,ω2)[(yθ−yθ∗)2],
discerning the magnitude or signs of θ∗ becomes indispensable for gleaning correct causal insights about
reaction severity and timing.

To tackle this inference task, a foundational methodology in statistics for estimating the true pa-
rameters θ∗ ∈ Rd of a d-dimensional model is through minimization of an objective function, typically
expressed as the expected loss over a distribution spanning dataset sample space Ω, also known as the
population risk:

θ∗ = arg min
θ∈Θ

{
ℓ(θ) = E[L(θ;ω)] =

∫
ω
L(θ;ω)dΠ(ω)

}
Following the standard approach, L(θ;ω) quantifies the empirical loss when estimating the parameter
θ given the observed data ω sampled by a distribution Π.
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However, direct computation of the expected loss or its gradient is often computationally infeasible,
rendering traditional optimization methods unsuitable. A common remedy is to replace θ∗ with its
empirical counterpart θ∗n:

θ∗n = arg min
θ∈Θ

1

n

n∑
i=1

L(θ;ωs), (ERM)

an approach frequently termed empirical risk minimization (ERM) or M -estimation [Hayashi, 2011].
To ensure the statistical soundness of this relaxation, two core criteria must be met (See Wasserman

[2004]):
i) The consistency of the estimator θ∗n, which ensures it converges in probability to the true parameter

value as the sample size tends to infinity.
ii) The existence of a central limit theorem (CLT), which identifies an asymptotic limiting distribution,
is pivotal for crafting confidence intervals for θ∗n.

Building on these prerequisites, [Van der Vaart, 2000] demonstrates that under mild regularity
conditions, ERM solutions exhibit asymptotic normality, meaning

√
n(θ∗n − θ∗) weakly converge to a

normal distribution.
Attracted by the centrality of our question in ML, prior work has showcased that the framework

of gradient-based estimators provides both promising solutions and inherent challenges. Even for the
basic case of smooth strongly convex loss functions, the standard implementation for stochastic gradient
descent (SGD) – traced back to the seminal work of Robbins and Monro [1951] – only partially meets
the criteria set out earlier. Specifically, the last iteration of SGD, when viewed as a statistical estimator,
demonstrates a) asymptotic normality1 but b) with sub-optimal rate of consistency2.

To ensure an optimally
√
n-consistent estimator, Polyak [1990b] and Ruppert [1988] independently

independently proposed as statistical estimator the averaged SGD (ASGD) iterate:

θ̂ASGD
n = n−1

n∑
k=1

θk, where θk = θk−1 − ηk∇L(θk−1;ωk) (Polyak-Ruppert averaging scheme)

for a diminishing learning rate ηk ∝ 1/kρ, ρ ∈ (0.5, 1). Indeed, Polyak and Juditsky [1992b] confirmed
its

√
n-consistency and asymptotic normality, forming a bedrock for further advances in the domain.

However, real-world applications introduce their own complexities: Modern systems frequently pro-
cess online streaming data [Agarwal and Duchi, 2012], handle large datasets tainted by numerical errors
[Schroeder and Gibson, 2009] or data intentionally obfuscated for privacy considerations [Song et al.,
2013]. Moreover, practicalities, like dropout in neural training or storage limitations, lead to periodic
data exclusion [Srebro and Tewari, 2010]. These factors have necessitated a further adaptation of unbi-
ased gradient estimates instead of complete ones yielding novel classes of stochastic gradient algorithms
(See Bottou et al. [2018] recent review). While the simplicity and performance of such algorithms have
cemented their quintessential status, a significant portion of the theoretical literature remains tethered
to the idealistic assumptions of a strictly convex underlying objective and i.i.d. data.

1An estimator θ̂Alg
n for a parameter θ∗ is said asymptotically normal if, where:

√
n(θ̂Alg

n − θ∗)
d−→ N (0, σ2),

indicating that θ̂Alg
n converges to a normal distribution as the sample size n increases.

2An estimator θ̂Alg
n for a parameter θ∗ is said to be rate(n)-consistent when, where:

rate(n) · (θ̂Alg
n − θ∗)

p−→ 0

indicating that the likelihood of the difference between θ̂Alg
n and θ∗ exceeding any fixed ε > 0 diminishes as n grows.
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Against this backdrop, the crux of this study seeks to probe these theoretical limits, asking:
Is it possible to design an estimator that is both consistent and asymptotically normal in structured

ML-driven non-convex landscapes, especially when dealing with correlated streamed datasets?
In the above quest, we pursue a twofold approach:
i) Composite convex optimization. In a series of machine learning tasks — from proximal gradient

methods in reinforcement learning [?], Kalman smoothing [Aravkin et al., 2013], to generative models [?]
— the objective often arises from merging a strongly convex function (typically a penalty function like
squared-mean or negative log-likelihood) with an often intractable non-convex differentiable map. In
these contexts, the map’s outcomes are defined by a low-dimensional space of control variables, akin to
the bias and weight parameters found in neural networks. Then through this map, the control variables
are expanded into a higher-dimensional manifold providing the latent variables within the penalty
function. From an optimization standpoint, this composition ”hides” the strongly convex geometry of
the penalty function, leading to highly non-convex optimization landscapes. This class of loss penalties
has been of particular interest as many forms of non-convex programming, e.g. SDP, QP, etc. can be
formulated in this manner [?].

ii) Correlated Streamed Data: In a separate axis of research, online data, which is frequently updated
in real-time, has become indispensable in today’s digital landscape. This trend is particularly evident in
time series applications, from financial market trends [Pincus and Kalman, 2004] and weather forecasting
[Wang et al., 2015] to patient health monitoring [Fassois and Kopsaftopoulos, 2013]. Moreover, models
in these domains sometimes exhibit noise with correlated patterns. Such phenomena are prominent in
deep reinforcement learning [Chen et al., 2022] techniques where data are decision-dependent from the
previous outcomes through a Markov Decision Process (MDP).

1.1 Our Results & Techniques.

Figure 1: Model parameter distribution given by bootstrap samples. The distribution is asymptotically
normal and centered at the true values

In this paper, we aim to offer an affirmative answer to the outlined challenges. For this purpose,
we assert that the input steaming data only needs to comply with the ϕ−mixing property [Ibragimov,
1959]—a broader form of time series dependence encompassing classical Markovian dependencies. Fur-
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ther, we engage with the ”hidden convexity” paradigm, a concept originally sparked by the dynamics
of games induced by neural networks [Goodfellow et al., 2014, Perolat et al., 2022].

In this setting, we introduce SHADE, an innovative gradient-based estimator that capitalizes on the
representation function linking control and latent variables. This estimator amalgamates techniques
like the Polyak-Ruppert acceleration, a natural gradient approach [Mladenovic et al., 2021], and a
preconditioned discretization [Sakos et al., 2023].

Aligning with the criteria outlined in our introduction, Theorem 1 confirms the consistency of our
estimator in both the latent and control spaces. This outcome emerges from synergizing (1) modern
standard descent inequalities in composite convex optimization, (2) the foundational work of [Yu, 1994]
offering robust statistical assurances for a stochastic first oracle, and (3) the Robbins-Siegmund conver-
gence theorem tailored to stochastic approximation concerning non-negative near-super-martingales.

Building on these foundations, Theorem 2 demonstrates the SHADE estimator’s asymptotic nor-
mality through a central limit theorem. Leveraging this asymptotic behavior, we formulate a bootstrap
variant of SHADE and show in Theorem 3 that the asymptotic behavior of the estimates matches that
of the SHADE itself, facilitating the creation of provable confidence intervals.

To consolidate our findings, we provide empirical evidence underscoring the efficacy of the SHADE
estimator, in regression and real-world settings.

2 Problem setup and preliminaries

Formalizing the interactions between control and latent parameters common in machine learning penal-
ties, we utilize the broad and expressive class of hidden or composite convex loss functions, characterized
as below.

Definition 1 (Latent Convex Function) A loss function ℓ admits latent or hidden structure if

1. The control variables θ ∈ Θ are mapped faithfully to a closed, compact, convex set of latent
variables x ∈ X ⊆ Rd; the map is Lipschitz smooth χ : Θ → X with no critical points and
cl(χ(Θ)) = X

2. The loss factors through the latent space x as

ℓ(θ) = f(χ(θ))

for a strongly convex Lipschitz smooth function f : X → R.

For this class of penalty, any stationary point corresponds to the global optima [Fatkhullin et al.,
2023]. To motivate this notion, we provide a couple of illustrative examples.

Example 2.1: Consider equipping the classical linear model with a latent parameter yi = wT
i χ(θ),

where χ is a preconfigured multi-layer perceptron (MLP). Minimizing the squared error loss over a finite
dataset yields an objective of

ℓ(θ) =

n∑
i=1

(yi − wT
i χ(θi))

2 =

n∑
i=1

(yi − wT
i xi)

2
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Example 2.2: We now turn to a more complex example in convex reinforcement learning. The
standard reinforcement learning setting hinges on a Markov decision process, M(S,A,P, H, ρ, γ), where
S,A represent the state and action spaces respectively, P : S × A → ∆(S) is a state transition kernel
returning a distribution over states, ρ is the initial state distribution, and γ is the time discount factor.
Our goal is to ascribe actions to a distribution over states, through a policy function π : S → ∆(A).
We additionally denote Pρ,π to be the probability measure induced by an initial distribution ρ and a
policy π. We define a state-occupancy measure as follows.

λπ(s, a) =
∞∑
t=1

γtPρ,π(st = s, at = a)

Denote U = {λπ;π ∈ Π} to be the set of state-occupancy measures. Then given a convex cost function
H : U → R, our goal is to minimize

min
π∈Π

ℓ(π) = H(λπ)

This loss function is not necessarily convex in ℓ(·), yet the cost H(·) exhibits convexity in terms of the
state-occupancy measures. This latent convex characterization subsumes many reinforcement learning
strategies, including pure exploration learning, when H(λπ) represents the negative entropy of the policy
π, and imitation learning, where H(λπ) represents the KL divergence between the expert policy and
the current. Note in this paradigm, we can only interact with the representation of the loss through the
representation.

Given that ℓ(θ) is statistically incomputable, we assume only the stochastic loss function L(θ; Ω) is
given. As such, we quantify the qualitative definition given above and impose certain criteria common
in the literature [Hazan, 2012, Lan, 2020].

Assumption 1 (Loss Function) The loss function ℓ(θ) is latent convex, and is the expectation of the
noisy empirical loss L : Θ × Ω → R, over the probability space (Ω,F ,P).

• L(θ;ω) is differentiable and c−Lipschitz in θ for almost all ω.

• The gradients of L(θ;ω) have bounded p−th moments, for some p > 2, i.e. supθ∈Θ E[∥∇L(θ;ω)∥p] ≤
Mp

• The Jacobian of the representation mapping Jacχ(θ) has a bounded spectra; i.e. σmin(Jacχ(θ)) > 0
and σmax(Jacχ(θ)) <∞

Remarks: Combining the parts of Assumption 1 implies ℓ(θ) is a Lipschitz smooth differentiable function
and ∇L(θ, ω) is an unbiased estimator of ∇ ℓ(θ). Moreover, the second assumption is common in the
literature regarding ”sandwich” covariance estimators [Liu et al., 2023].

Notation: To streamline notation, we denote the parameters in the control space θ and write
x = χ(θ), for the induced latent map. When the representation mapping χ is clear from context, we
write J(θ) := Jac(χ(θ)). Moreover, for brevity, we denote the gradient concerning multiple datapoints

∇L(θ; Ω) := ∇ 1

|Ω|
∑
s∈Ω

L(θ;ωs)

A similar substitution is made for the monotonic loss ∇ f(x; Ω) = ∇ 1
|Ω|
∑

s∈Ω f(x;ωs). The term (·)+
refers to the Moore-Penrose pseudoinverse.
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ϕ−Mixing: Furthermore, we assume the data comes from a ϕ−mixing process [Ibragimov, 1959].
Formally, given a probability space (Ω,F ,P), where A,B are sub-sigma-algebras of F , the mixing
coefficient for A,B is defined

ϕP (A,B) = sup
A∈A,B∈B,P (B)>0

|P (B|A) − P (B)|

For a sequence of data {ωs}∞s=1, we define Fb
a to be the σ−algebra generated by {ωs}bs=a and ϕΩ(t)

ϕΩ(t) = sup
s≥1

ϕP (Fs
1 ,F∞

s+t).

The expression ϕΩ(t) can be thought of as the maximum amount of information gained, here in the
form of a conditional probability, by knowing data from t or more steps in the past. For a sequence
to qualify as ϕ−mixing, the value of ϕΩ(t) must converge to zero as t diverges to infinity. Examples of
ϕ−mixing sequences include Markov decision processes [Bradley, 2005], low-rank vector autoregressive
processes [Rémillard et al., 2012], and Gaussian processes [Samson, 2000]. As an example of the power
of this condition, we present the following proposition.

Proposition 1 (Markov Dependence) Let X = (Xk)∞k=0 be a Markov chain. Then if ϕΩ(n) < 1 for
some n ≥ 1, then ϕΩ(n) → 0 at least exponentially fast as n→ ∞.

This fact is shown in the appendix.

Covariance Estimation: To adequately conduct statistical inference tasks, e.g. creating confidence
intervals, the covariance structure of the parameters needs to be estimated. However, given that the
data is correlated, this often contains auto-correlated components and is difficult to determine. To
remedy these issues, we leverage a version of the bootstrap SGD algorithm, introduced by Fang et al.
[2018], outlined below is a computationally efficient method for elucidating the asymptotic covariance
and is detailed as follows.

θ•
t = θ•

t−1 − γtUt∇L(θ•
t−1, ωt) (Bootstrap SGD)

The Ut values are random variables with mean and variance one. Under i.i.d. data, the authors
demonstrated the convergence of the Polyak-Ruppert average of the bootstrap estimates to the same
limiting distribution as the averaged SGD iterates. If θ• represents the bootstrap SGD iterate, then the
following holds.

1√
n

(
n∑

k=1

θSGD − θ0),
1√
n

(
n∑

k=1

θ•
k −

n∑
k=1

θk)|ω1, ..., ωn
L−→ φ

3 Latent Estimation

Throughout this section, we introduce the stochastic hidden averaging data estimator (SHADE), our
parameter estimator for inference in latent convex regimes. By leveraging gradient preconditioning
and mini-batching, our goal is to overcome (i.) the pitfalls of traditional stochastic gradient descent
estimators within non-convex loss landscapes and, (ii.) the idealistic expectation that the data is created
from an i.i.d. process.
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Gradient Preconditioning: We begin by addressing the first issue by building the parameter esti-
mator from a natural gradient flow. Given a function ℓ : Θ → R, and a class of metric tensors, here a
set of parameterized positive semidefinite matrices Pθ, θ ∈ Θ, the natural gradient flow is given by the
steepest descent in the geometry induced by the preconditioner matrix.

θ̇ = −P−1
θ ∇ℓ(θ)

Commonly used preconditioners include the identity matrix, which captures the standard geometry of
Euclidean spaces and yields the vanilla gradient flow, and the Fisher information matrix which can be
characterized as follows. If pθ is a probability measure, under suitable regularity conditions

θ̇ := −P−1
θ ∇ℓ(θ)where Pθ := −Ex∼p(θ)[∇2 log(pθ(x))]

In this same vein, given the strongly convex nature of the penalty function relative to the output of the
representation map ℓ(θ) = f(χ(θ)), Sakos et al. [2023] propose the preconditioned hidden gradient flow,
which uses a metric that captures the complex geometry of the representation mapping.

θ̇ = −Pθ∇ℓ(θ),Pθ = [Jac(χ(θ))TJac(χ(θ))]+

The term (·)+ refers to the Moore-Penrose pseudoinverse. Via showing the L2 energy function E(θ) =
1
2∥χ(θ) − x∗∥2 is a Lyapunov function, the authors successfully demonstrated the flows converges de-
spite the lack of separability arguments for the representation mapping. Below we demonstrate why
such a preconditioner is necessary to achieve near optimal The discretized flow, the preconditioned
hidden gradient descent, detailed below, moreover, was shown to converge polynomially in the latent
convex regime. Thus as a starting point for building our estimator, we leverage the iterates from a
preconditioned hidden gradient descent process to ensure the consistency of our estimates.

Algorithm 1 Pre-Conditioned Hidden Gradient Descent

Input: Data {ωs}∞1 , learning rate γt, block size Bt, intial value θ0.
for t = 1 to T do

Construct index set It based on block size Bt.
Compute the Jacobian of χ at θt−1, Jac(χ(θt−1)) := Jθt−1 .
Compute P(θt−1) := [JT

θt−1
Jθt−1 ]+

Compute Vt−1 := ∇L(θt−1; Ωt)
Update θt = θt−1 − γt−1P(θt−1)Vt

end for
return θT

Comparison With Gradient Descent Based Estimators: In the literature of convex optimiza-
tion, Fatkhullin et al. [2023] have recently shown that stochastic gradient descent methods converge
deterministically to the global optima of latent convex penalties, like the aforementioned precondi-
tioned hidden gradient descent. The authors additionally show that for certain classes of smooth convex
functions, up to logarithmic factors, sample complexities, and convergence rates known for convex and
strongly convex objectives can be achieved for this particular class. Yet for still others, in comparison
to the convergence of preconditioned hidden gradient descent, the rates lag, signaling the power of the
Jacobian. As an example, we observe the following proposition.
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Proposition 2 (Convergence Rate of Stochastic Descent in Hidden Convex Objectives) Let
ℓ(θ) be a composite convex function. Fix ϵ > 0. Then, we aim to have a bound for T such that

E[E(θT ;x∗)] =
1

2
∥χ(θT ) − x∗∥2 ≤ ϵ

If ℓ(θ) = f(χ(θ)) is merely composite convex, i.e. f is merely convex, then E[ET ] ≤ ϵ when T = Õ(ϵ−3)
if θ is an iterate of stochastic gradient descent, and T = Õ(ϵ−2) if it is an iterate of PHGD.

This fact is shown in the appendix and highlights the advantages PHGD has over traditional gradient
descent, with the bound PHGD attains matching that of the merely convex case for stochastic gradient
descent. Moreover, in practical settings, as we will examine in the experiments, SGD often struggles to
robustly estimate the true parameters in comparison to PHGD.

Mini-Batching: The complex nature of ϕ−mixing sequences yields that limiting distributions of
bootstrap estimators may not share the same structure as those built from empirical risk minimization
solutions. Indeed, Liu et al. [2023] point out that the results from Fang et al. [2018] do not extend
to the mixing cases, as the two quantities can differ greatly asymptotically. To counteract this, they
propose a mini-batch estimator inspired by the independence block trick from Yu [1994] which takes
advantage of the decreased correlation of temporally separated data. The authors partition the dataset
{ω}∞t into non-overlapping blocks with the following indices, where Bt is the block size at time t.

It = {2
t−1∑
k=1

Bk, ..., 2
t−1∑
k=1

Bk +Bt}

Jt = {2
t−1∑
k=1

Bk +Bt + 1, ..., 2
t∑

k=1

Bk}

Parameter estimates are found by averaging two Polyak-Ruppert SGD estimators built off of observa-

Figure 2: Visualization of data blocks

tions from non-overlapping blocks.

θ̄ =
1

2T

T∑
t=1

(θit + θjt )where θkt = θkt−1 − γt∇L(θkt−1; Ωk
t ), and Ωk

t = {ωi|i ∈ Kt}

This step along with the properties of ϕ−mixing sequences imply the following approximation.

E[
∑

s∈Ωt+1

∇L(θt+1;ωs)|θt] ≈ ∇ ℓ(θt)

This falls in line with the existing stochastic optimization literature which has shown both theoretically,
in terms of sample complexity [Ma et al., 2022], and practically, with the ever larger scope of datasets.
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Stochastic Hidden Data Averaging Estimator: Leveraging insights from both mini-batch esti-
mation and preconditioned descent schemes, we arrive at the stochastic hidden data averaging estimator
(SHADE). From the parameter estimates generated from PHGD, we use the mini-batch ideas from above
to derive the following estimator.

θ̂SHADE =
1

2T

T∑
t=1

(θit + θjt ),where θkt = θkt−1 − γtPθ∇L(θkt−1; Ωk
t ) (SHADE)

By using the preconditioned descent algorithm we can ensure the consistency of our estimator and
can confidently conduct inferential tasks.

4 Asymptotic analysis and results

In this section, we present our main results regarding the asymptotic behaviour of SHADE, and the
bootstrap estimates, showing they are asymptotically consistent and normal. To this end, the section
begins with a discussion of our model of ϕ−mixing data sequence and its interplay with the batch size.
The proofs are deferred to the appendix.

Model 1 (Descent Parameters) Our model of the asymptotic nature of the correlated, streaming
data is characterized as follows. We impose rate limiting conditions on the ϕ−mixing data sequence
{ωs}∞s=1 and associated batch size Bt.

• The learning rate of the algorithm satisfies γt = (γ0 + t)−ρ

• The mixing coefficients satisfy
∑∞

t=1

√
ϕ(t) <∞ and that

∑∞
t=1 ϕ

1−2/p(t) <∞ and ϕ1−1/p(Bt) <
∞

• Our batch size increases to infinity as t increases and that
∑∞

t=1 t
−ρϕ1/2−1/p(Bt) <∞

• The mixing conditions, batch size and learning rate satisfy the following ϕ1/2−1/p(Bt) = O(t−ρ),∑t
j=1 ϕ

1/2−1/p(Bt),
∑t

j=1 j
−ρ = o(

√∑t
j=1B

−1
j ), tρ = o(

∑t
j=1B

−1
j )

Remarks: These conditions provide some rate limitations for both the learning rate and the mixing
coefficients. The first assumption requires that the learning rate satisfies,

∑∞
t=1 γ

2
t < ∞ and that∑∞

t=1 γt = ∞; this assumption is widely used in the literature [Polyak, 1990b], [Fang et al., 2018],
[Sakos et al., 2023], [Liu et al., 2023]. The remaining assumptions are the so-called algebraic mixing
conditions and ensure the covariance matrix is well-defined [Fan and Yao, 2003], and imply the batch
size increases to infinity asymptotically. The final assumption controls higher-order error terms.

The batch size diverges asymptotically to ensure the estimator stays
√
n-consistent. Indeed, as we

will see in the sequel, our estimates have a convergence rate of
√∑

t≤T B
−1
t /T given 2T batches. Note

that if we replace Bt with a constant, the rate degenerates to a constant speed.

Convergence Results: We are now in a position to state the main results regarding the asymptotic
behavior of the SHADE estimator. To streamline the presentation, we begin with results regarding
consistency before analysis of the asymptotic distribution.
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Theorem 1 (Consistency) Given the assumptions in part 2, we conclude that the SHADE estimator
satisfies

θ̂SHADE
a.s.−−→ θ∗.

This theorem ensures the SHADE estimator is strongly consistent and follows the results found in
Polyak and Juditsky [1992a] and Liu et al. [2023]. This proof relies on the Robbins-Siegmund theorem
[Robbins and Siegmund, 1971], a result which shows that if Lyapunov functions of a non-negative
martingale converge to zero, the overall function converges to the optimum. By showing the L2 energy
function

E(θ;x∗) =
1

2
∥χ(θ) − x∗∥2

is asymptotically zero, we additionally show the iterates of the stochastic process converge to the optima.

Asymptotic Normality: We proceed with characterizations of the asymptotic distributions of our
estimators. In advance of discussing the covariance structure, we define the autocorrelation coefficients.

Definition 2 (Autocorrelation Coefficients) Let L(θ; Ω) be a stochastic loss function satisfying the
assumptions laid out in Assumption 1. Then we define

r(t) = E[∇L(θk+t; Ωk+t)∇L(θk; Ωk)T ]

Theorem 2 (Asymptotic Normality of SHADE) Given the assumptions above, the following cor-
respondence occurs

T√∑T
t≥1B

−1
t

(θ̂SHADE − θ∗) → N (0,J(θ∗)+Σ[J(θ∗)+]T )

where Σ = G−1(2r(0) + 4
∑

k≥1 r(k))G−1, G = ∇2 f(x∗) and J(θ∗) is the Jacobian evaluated at the
optimal θ value.

This result mirrors the central limit theorem found in Polyak and Juditsky [1992a], Liu et al. [2023],
and Mou et al. [2020], and uses the variance structure found in [Fan and Yao, 2003] It is also important
to note that this theorem subsumes central limit theorem attained under i.i.d. data, as in this case, the
autocorrelation coefficient r(k) = 0, and yields the sandwich estimator found in Polyak [1990b] and Su
and Zhu [2018].

T−1/2(θ̂SHADE − θ∗) → N (0,J(θ∗)+G−1r(0)G−1[J(θ∗)+]T )

Moreover, the asymptotic normality results can be extended to the bootstrap estimates,by showing
the sequence satisfies the Lindeberg condition [Brown, 1971].

Theorem 3 (Bootstrap Normality) Suppose the assumptions in part 3 hold. Then

T√∑T
t=1B

−1
t

(θ̂∗T − θ̂SHADE)|D L−→ N (0, Σ̂)

where D = {ωi|i ∈ It ∪ Jt} and represents the data used in the empirical risk minimization process,
and Σ̂ = J(θ∗)+G−1(2r(0) + 4

∑
k≥1 r(k))G−1[J(θ∗)+]T is the covariance matrix in Theorem 2
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This theorem provides the guarantee that the asymptotic distributions of the bootstrap estimates
will match that of SHADE. This ensures the consistency of these estimates and from this we can
construct confidence regions and find standard errors.

Given that the proofs of Theorems 1-3 are quite involved, we defer proofs to the appendix. To show
a few of the ideas that aided in the construction of the results, we now show a few pivotal lemmas
(without proof).

Lemma 1 (Representation Gap) If the assumptions on the singular values in part three hold, then
the following inequality holds, where σmin, σmax are the smallest and largest singular values respectively.

σmin||θ − θ∗|| ≤ ||χ(θ) − χ(θ∗)|| ≤ σmax||θ − θ∗||.

This lemma controls the ’distortion’ of the distance metric between the latent and control spaces by
the representation mapping and performs a key role in the analysis. To take advantage of the simpler
geometry of the latent space, we characterize the evolution of the latent iterates in the following manner.

Lemma 2 (Descent Equality) Let xt = χ(θt), we then have that for iterates of PHGD

xt+1 = xt − γtUt∇f(xt; Ω) + γ2t U
2
t O(∥θt − θt−1∥2).

This lemma shifts problems of convergence and consistency into the strongly convex latent space,
where the analysis of martingale sums simplifies dramatically.

Importantly, the asymptotic results show that the SHADE estimator is (i.) consistent and (ii.)
asymptotically normal, despite the impediment of mixing data, ensuring the soundness of our statistical
estimates. This demonstrates that the latent convex structure of our penalty can be exploited to conduct
robust inference.

6. Conclusion

This paper proposed a new statistical estimator with strong asymptotic convergence guarantees for
inference problems with a latent convex penalty with mixing data. Our estimator extends the Polyak-
Ruppert averaging scheme to iterate of the preconditioned gradient descent and is successful in modeling
the latent/hidden variables that arise in neural networks and can thus model numerous AI applications.
These results emerge from the interplay of non-convex optimization, online learning and statistical
estimation and open the door for future work.
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A Background and Preliminaries

A.1 Background in dynamical systems:

Our analysis combines tools from dynamical systems, probability theory, and stochastic algo-
rithms. We begin with a discussion of asymptotic stability and Lyapunov’s theorem, culminating
in the introduction of a Lyapunov function for the preconditioned hidden gradient descent. Dy-
namical systems theory plays a role in laying the groundwork for the Robbins-Siegmund theorem,
which is used to prove the asymptotic consistency of our estimators.

We define f : D → Rn to be a local Lipschitz map from a subset D ⊂ Rn. In this section, we
consider dynamical systems of the form

ẋ = f(x) (A.1)

If f(x∗) = 0, we denote x∗ to be a fixed point. We can characterize stability in the following manner.

Definition A.1 (Stability Properties) The dixed point x = 0 of Equation A.1 is

• stable if, ∀ϵ > 0, ∃δ > 0 such that

∥x(0)∥ < δ → ∥x(t)∥ < ϵ,∀t ≥ 0

• unstable if it is not stable

• asymptotically stable if it is stable and δ can be chosen such that

∥x(0)∥ < δ → lim
t→∞

∥x(t)∥ = 0

The Lyapunov theorem is useful for proving asymptotic stability and can be seen as a precursor to the
Robbins-Siegmund theorem used in section B.

Theorem A.1 Let x = 0 be a fixed point for Equation A.1, and let D ⊂ Rn contain 0. Let V : D → R
be a continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D/{0}, V̇ (x) ≤ 0 in D

then x = 0 is stable. Furthermore, if
V̇ (x) < 0 in D/{0}

then x = 0 is asymptotically stable.

In Sakos et al. [2023], the authors demonstrated the L2 energy function satisfies the conditions of
the V (·) function above.

Lemma A.1 Let E(θ;x∗) be the L2 energy function.

E(θ;x∗) =
1

2
∥χ(θ) − x∗∥2

Then E(θ;x∗) satisfies the Lyapunov theorem above
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Proof. This is Proposition 1 in Sakos et al. [2023] □

A.2 Gradient notation:

Here we characterize the gradient of the latent convex loss ℓ(θ) = f(χ(θ)), into a sum of 3
martingales. This is similar to the analysis done in Polyak [1990a] and allows tight second-
moment gradient bounds to be formed. The minibatch estimators θ̂i, θ̂j have similar functions
within the SHADE estimator, so without loss of generality it is sufficient to study θ̂i. For ease of
notation, we omit the superscripts in the sequel.

Both preconditioned hidden gradient descent and its bootstrap counterpart can be subsumed into
the following characterization.

θt+1 = θt − γt+1UtP(θt)Vt (A.2)

Ut are random variables with the following assumption.

Assumpsion A.1 The i.i.d. random variables Ut are independent from the data process {ωk}∞k=1. In
addition, E[Ut] = 1 and E[Up

t ] <∞ for the p introduced in Assumption 1.

It is clear to see that when Ut is the identity we recover the preconditioned hidden gradient descent,
and when E[Ut] = 1 and Var(Ut) = 1, we obtain the bootstrap variant. We use the following notation
for the analysis of the behaviour of the gradient.

Definition A.2 The gradient of the loss function can be characterized as follows.

• Et[·] = E[·|Ω1, ...,Ωt]

• h(x) = ∇ f(x)

• et = ET−1[∇ f(xT−1; ΩT )] −∇ f(xT−1)

• ζt = Ut∇ f(xT−1; ΩT ) − ET−1[∇ f(xT−1; ΩT )]

• ĝt = ∇ f(x; Ω) = 1
|Ω|
∑

s∈Ω∇ f(x;ωs))

Thus we can rewrite the descent procedure as the following.

θt+1 = θt − γt+1UtP(θt)J(θt)
T (h(χ(θt) + et + ζt) (A.3)

A.3 Moment inequalities:

We introduce a few key moment inequalities for ϕ−mixing sequences that will be of use when
bounding sums of martingale sequences. The second point in Model 1 allows the use of a theorem
from Yokoyama [1980], which gives sharp bounds on sums of martingale iterates.

Lemma A.2 (Moment Inequality) Let {Xt}∞t=1 be a stationary sequence with ϕ-mixing coefficients
bounded by the operator ϕ(t) defined analogously to above. In addition, we require that

∑∞
t=1

√
ϕ(t) <∞,

E[Xt] = 0 and that E[∥Xk
t ∥] <∞ for some value k > 2. Then E(|

∑T
i=1Xt|k) ≤ CkT

k/2

17



Proof. This result is theorem 3 in Yokoyama [1980] □

Lemma A.3 Let (X,Y ) and (X, Ỹ ) be random vectors where Y and Ỹ with the same marginal distri-
butions and m be an arbitrary constant. Then we claim

∥E[h(X,Y )|X] − E[h(X, Ỹ )|X]∥ ≤ mϕ(X,Y ) +
E[∥h(X,Y )∥p|X]

mp−1
+

E[∥h(X, Ỹ )∥p|X]

mp−1

Proof. This moment inequality is Lemma S.5 from Liu et al. [2023] □

A.4 Template inequality:

We now introduce a template inequality that relates the evolution of the energy Lyapunov func-
tion, E(θ;x∗) throughout time. This plays an important role in our analysis because it allows us to
relate the error in the game’s control space with the evolution of the algorithm’s quasi-Lyapunov
function in the game’s latent space.

Proposition A.1 (Template inequality) Let ℓ(θ) = E[L(θ;ω)] be a composite convex loss function.
Then for all x̃ ∈ X the iterates of (PHGD) satisfy the template inequality, where Et = E(θt;x

∗) =
∥χ(θt) − x∗∥2:

Et+1 ≤ Et − γt⟨h(xt), xt − x̃⟩ + γtαt + γ2t ψt

where αt =
∑

i≤N ⟨J(θt)
T ĝt, xt − x̃⟩ and ψt = κ∥Vt∥2, for some constant κ > 0.

Proof. This is an extension from the template descent inequality from Sakos et al. [2023], which can be
achieved via linearity in argument. This claims is created via creating bounds on the Taylor expanded
potential function. □

A.5 Analysis of convergence rates:

We conclude with a comparison of the convergence rates of stochastic gradient descent and pre-
conditioned hidden gradient descent on latent convex objectives. The PHGD iterates achieve
the (up to a logarithmic factor) the sharp convergence bounds of convex objectives, in contrast
to iterates of SGD which have a sub-optimal rate. Moreover, in practical settings, stochastic
gradient descent often fails to robustly converge, where objectives are not quite convex.

Proposition 2 (Convergence Rate of Stochastic Descent in Hidden Convex Objectives) Let
ℓ(θ) be a composite convex function. Fix ϵ > 0. Then, we aim to have a bound for T such that

E[E(θT ;x∗)] =
1

2
∥χ(θT ) − x∗∥2 ≤ ϵ

If ℓ(θ) = f(χ(θ)) is merely composite convex, i.e. f is merely convex, then E[ET ] ≤ ϵ when T = Õ(ϵ−3)
if θ is an iterate of stochastic gradient descent, and T = Õ(ϵ−2) if it is an iterate of PHGD.
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Proof. In preparation for the subsequent steps we define

ΛT = ℓ(θT ) − ℓ(θ∗) +
ρ

2
∥θT − θ∗∥2

In their recent review of the role of stochastic gradient descent in latent convex objectives Fatkhullin

et al. [2023] showed that when T = Õ(βDU
κ2

1
ϵ + βDUM2

κ4
1
ϵ3

), E[ΛT ] < ϵ. Here, κ is the Lipschitz coefficient
of the latent map χ, and DU is a constant stemming from the fact that f(·) is strongly convex and thus
satisfies the Kurdyka-Lojasiewicz (KL) condition [Karimi et al., 2016].

DU ≥ 2β(f(x) − f(x∗))

From the nature of f(·) we can deduce that

ℓ(θT ) − ℓ(θ∗) = f(χ(θT )) − f(χ(θ∗)) ≥ β

2
∥xT − x∗∥2

Thus from the Lipschitz properties of χ(·), it follows that

ΛT ≥ (
β + κρ

2
)∥xT − x∗∥2 = (

β + κρ

2
)ET

So it follows that the desired claim is shown for SGD. To proceed, we define g to be a convex function,
and the restricted merit function as follows.

GapC(x̂) = sup
x∈C

⟨g(x), x̂− x⟩

The affine function g(x) = x − x̂, indeed satisfies the condition of being merely convex. Thus now
turning attention to PHGD, through Theorem 1 of Sakos et al. [2023] demonstrated in the hidden
merely convex case that the averaged iterate satisfies the following convergence rate

E[GapC(χ(θ̄T ))] = Õ(t−1/2)

Inverting the convergence rate to achieve the sample complexity achieves the desired result. □

B Asymptotic consistency

Our goal in this appendix is to prove Theorem 1 which we restate below for convenience.

Theorem 1 (Consistency) Given the assumptions in part 2, we conclude that the SHADE estimator
satisfies

θ̂SHADE
a.s.−−→ θ∗.

Our proof strategy is comprised of the following steps.
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1. In Lemma A.3, we show the second moment of these martingale terms are then bounded
convex analysis; in turn, in Lemma A.4 we establish a bound on the entire second moment
in terms of the ϕ−mixing coefficients and the energy function.

2. From these bounds and the Lyapunov properties of the energy function, the Robbins-
Siegmund theorem [Robbins and Siegmund, 1971], the consistency of the averaged latent
iterates is shown

3. Applying ideas from real analysis, we can relate the latent and control spaces together,
allowing the consistency of SHADE to be shown.

In the sequel, these notions are made precise via a series of intermediate results.
B.1 Martingale Bounds

As a starting point, we aim to create a second moment bound on different parts of the loss
gradient. To deal with the difficulty of a latent convex objective, we create these bounds in
the latent space, rather than the control space, allowing us to use all the machinery of convex
functions. We use the moment bounds in the previous section and the independence block trick
to relate gradient terms to the energy function with the final goal of relating our estimators with
the energy function.

Lemma B.1 We seek the following bounds on elements of the descent, where vt is a quantity with finite
first moment:

(i) E ∥et∥2 ≤ ϕ1−2/p(Bt−1)vt

(ii) E ∥[ĝt − h(xt)∥2 ≤ C
Bt

(1 + ∥xt − x∗∥2)

(iii) Et(∥ζt∥2) ≤ ϕ1−2/p(Bt−1)vt + C
Bt

(1 + ∥xt−1 − x∗∥2)

Proof. (i.) The auxiliary term ẽt is equal to Et[∇ f(xt; Ωt)]− h(xt), where ω̃s is both independent from
and i.i.d. to our ω time series. Via independence, this value compresses into Gaussian noise and has
mean zero. Using lemma 5,

Et(∥et∥2) = |Et(∥et∥2) − Et(∥ẽt∥2)| (B.1)

Et(∥et∥2) ≤ mϕ(Bt) +
Et[∥et∥p]
mp/2−1

+
Et[∥ẽt∥p]
mp/2−1

(B.2)

So because our variable m is arbitrary, we define it to be ϕ−2/p(Bt). So (A.2) is

Et(∥et∥2) ≤ ϕ1−2/p(Bt) + ϕ1−2/p(Bt)Et[∥et∥p] + ϕ1−2/p(Bt)Et[∥ẽt∥p]

We now seek a bound on the p-th moment of et. We note that

E1/p(∥et∥p) = E1/p[∥∇ f(xt; Ωt) − h(xt)∥p] (B.3)

≤ E1/p[∥∇ f(xt; Ωt)∥p] + sup
x∈X

∥h(x)∥ (B.4)

≤ sup
ω∈Ωt

E1/p[Mp(ω)] + C (B.5)
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An analogous result holds for ẽt.

E1/p(∥ẽt∥p) ≤ E1/p[Mp(Z)] + C (B.6)

Defining v1t
v1t = 1 + Et[∥et∥p] + Et[∥ẽt∥p] (B.7)

So, v1t has finite mean
E[vt] ≤ 2E1/p[Mp(ω∗)] + C (B.8)

The bound in Lemma A.3 finishes the claim. □

Proof.(ii.) Using the definition of gt found in the method section

ĝt − h(xt) = ∇ f(xt; Ωt) − h(xt) (B.9)

The sum of these variables satisfies condition of Lemma A.1, and so we conclude that

E ∥∇ f(xt; Ωt) − h(xt)∥2 ≤
C

Bt
≤ C

Bt
(1 + ∥xt − x∗∥2) (B.10)

So we have shown the desired claim. □

Proof.[(iii.)] Analogously part (i.), we define ζ̃t as follows.

ζ̃t = Ut∇ f(xt−1; Ω̃t) − Et−1[∇ f(xt−1; Ω̃t)] (B.11)

As mentioned earlier, {ω̃}∞s=1 is identical to the process in (i.). So applying Lemma A.3 yields

|Et(∥ζt∥2) − Et(∥ζ̃t∥2)| ≤ mϕ(Bt) +
Et[∥ζt∥p]
mp−1

+
Et[∥ζ̃t∥p]
mp−1

(B.12)

In the same vein as (i.), we can bound E[∥ζt∥p] and by extension E[∥ζ̃t∥p] by the constant Cp. If we set
m = ϕ−2/p(Bt) This leads to

|Et(∥ζt∥2) − Et(∥ζ̃t∥2)| ≤ ϕ1−2/p(Bt)[1 + Et[∥ζt∥p] + Et[∥ζ̃t∥p]] (B.13)

Expanding the terms in above we see that

Et ∥ζ̃t∥2 ≤ 2(∇ f(xt−1; Ωt) − Et−1[∇ f(xt−1; Ωt)] + ∥et∥2) (B.14)

Combining statements (i.) and (ii.) yields the following inequality, where v2t = (1+Et[∥ζt∥p]+Et[∥ζ̃t∥p])

Et−1(∥ζt∥2) ≤ ϕ
1− 2

p (Bt−1)v2t + CB−1
t (1 + ∥xt−1 − t∗∥2) (B.15)

Here v2t bounded above by our constant C. To show the desired result, we take vt = v1t + v2t □

Given we have established bounds for et, h(x)andζt in terms of the energy function, we now
extend the argument for the entire gradient term.
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Lemma B.2 We now show the following bound on the second moment of the gradient, where ∆t =
xt − x∗.

Et[∥γtVt∥2] ≤ (Cγ2t σ̃
2
max + Cγ2t σ̃

2
maxB

−1
t )∥∆t−1∥2

+ Cγ2t σ̃
2
max(1 +B−1

t ) + 4γ2t σ̃
2
maxϕ

1−2/p(Bt)vt + 4Cγtσ̃max

√
ϕ1−2/p(Bt)vt

+ 2γ2t σ̃
2
max

√
ϕ1−2/p(Bt)vt

√
CB−1

t (1 + C2)

Proof.

∥γtVt∥2 = ∥γtJ(θt)
T [h(xt) + et + ζt]∥2

= γ2t ∥J(θt)
Th(xt)∥2 + γ2t ∥J(θt)

T et∥2 + γ2t ∥J(θt)
T ζt∥2

+ 2γth(xt)
T [J(θt)J(θt)

T ]+et + 2γth(xt)
T [J(θt)J(θt)

T ]+ζt + 2γte
T
t [J(θt)J(θt)

T ]+ζt

≤ γ2t ∥J(θt)
Th(xt)∥2 + γ2t ∥J(θt)

T et∥2 + γ2t ∥J(θt)
T ζt∥2

+ 2γt∥h(xt)J(θt)
+∥∥J(θt)

+et∥ + 2γt∥h(xt)J(θt)
+∥∥J(θt)

+ζt∥ + 2γt∥etJ(θt)
+∥∥J(θt)

+ζt∥

We can then harness conditional expectation to yield that

Et−1[∥γtVt∥2] ≤ γ2t ∥J(θt)
+h(xt)∥2 + γ2t Et−1 ∥J(θt)

+et∥2 + γ2t Et−1 ∥J(θt)
+ζt∥2

+ 2γ2t ∥J(θt)
+h(xt)∥Et−1∥J(θt)

+et∥ + 2γ2t Et−1[∥J(θt)
+et∥∥J(θt)

+ζt∥]

We can then use the rates from Lemma A.3 in order to bound the value of ∥∆t∥2. In addition, because
J(θt)

+ has a bounded spectra, we can write that ∥J(θt)
+v∥ ≤ σ̃max∥v∥, where σ̃max is the largest singular

value of the Moore-Penrose pseudo-inverse of the Jacobian, or the inverse of the smallest positive singular
value.

Et−1[∥γtVt∥2] ≤ γ2t σ̃
2
max · C + 2γ2t σ̃

2
maxϕ

1−2/p(Bt)vt +
Cσ̃2maxγ

2
t

Bt
(1 + ∥∆t∥2)

+ 2Cγtσ̃max

√
ϕ1−2/p(Bt)vt + 2Cγ2t σ̃

2
max

√
ϕ1−2/p(Bt)vt

+ 2γ2t σ̃
2
max

√
ϕ1−2/p(Bt)vt

√
ϕ1−2/p(Bt)vt +

C

Bt
(1 + ∥∆t∥2)

≤ (1 + Cγ2t σ̃
2
max + Cγ2t σ̃

2
maxB

−1
t )∥∆t∥2

+ Cγ2t σ̃
2
max(1 +B−1

t ) + 4γ2t σ̃
2
maxϕ

1−2/p(Bt)vt + 4Cγtσ̃max

√
ϕ1−2/p(Bt)vt

+ 2γ2t σ̃
2
max

√
ϕ1−2/p(Bt)vt

√
CB−1

t (1 + C2)

□

B.2 Consistency Theorem:
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We now satisfy the first requirement of an estimator to conduct robust estimation, consistency.
Given the bound generated in the previous parts, and the rate limits established in Model 1,
we show the convergence of the energy function to zero through a Lyapunov argument and the
template inequality. Consequently, the estimator built off of the latent iterates x̄T = T−1

∑T
t=1 xt

is also asymptotically consistent. To extend this to the control space, we show a duality gap in
Lemma B.4, that relates how far the parameter values get stretched to the singular values of the
Jacobian.

Theorem B.1 (Robbins-Siegmund) If (Vt)t≥1 = V (Xt)t≥1, (ψt)t≥1, (αt)t≥1, (Ut)t≥1 be four nonneg-
ative (Ft)t≥1-adapted processes such that∑

t≥1

ψt ≤ ∞, sup
ω∈Ω

∏
n≥1

(1 + αn(ω)) ≤ ∞

Then if ∀n ∈ N
E[Vt|Ft−1] ≤ Vt−1(1 + αt−1) + ψt−1 − Ut−1

Then we claim that Vn
a.s.−−→ V∞, supn≥0 E[Vn] <∞.

In the proceeding section, the function V (·) will be ”Lyapunov”. If the algorithm indeed satsifies the
above inequality, then with a suitable function V (·), the algorithm itself can be shown to be convergent.

As shown earlier in part A.1, the elements eT and ζT are martingale terms. Thus when analyzing
the sequence in question,

θT+1 = θT − γT+1ĝt = θT − γT+1(h(θT ) + eT+1 + ζT+1)

We can apply the Robbins-Siegmund theorem to the previous martingale sequence to derive the follow-
ing.

Corollary B.1 Let θn be defined in the sequence above, and let V (·) be a Lyapunov function. Then if
E[∥ĝ∥2|Fn−1] ≤ Cγ2n(1 + V (θn−1)) then

θ̂n − θ̂n−1
a.s.−−→ 0

Proof. This proof is an adaptation of Theorem 5.3 in [Kushner and Yin, 2003]. □

We next show a useful lemma relating the latent and control spaces.

Lemma 1 (Representation Gap) If the assumptions on the singular values in part three hold, then
the following inequality holds, where σmin, σmax are the smallest and largest singular values respectively.

σmin||θ − θ∗|| ≤ ||χ(θ) − χ(θ∗)|| ≤ σmax||θ − θ∗||.

Proof.
We first prove the upper bound. This amounts to showing that our function χ is Lipschitz. Recall

that by the definition of the Jacobian, given a vector v with norm equal to one, we have that

lim
t→0

|χ(θ) − χ(θ + tv)|
t

= J(θ)(v) (B.16)
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So for all ε, there exists a δ such that if t < δ, we have that

|| |χ(θ) − χ(θ + tv)|
t

− J(θ)(v)|| < ε (B.17)

Then using the fact that |||a|| − ||b||| < ||a− b||, we claim that

−ε+ σmin ≤ −ε+ ||J(θ)(v)|| < || |χ(θ) − χ(θ + tv)|
t

|| < ε+ ||J(θ)(v)|| ≤ ε+ σmax (B.18)

The second inequality is due to the fact that our Jacobian has a bounded spectra. We note that this
holds true for all v on the unit ball. Thus if we replace the value t · v with θ∗ − θ where ||θ − θ∗|| < δ,
we can conclude that

−ε+ σmin <
||χ(θ) − χ(θ∗)||

||θ − θ∗||
< ε+ σmax (B.19)

Thus we have shown our function is bi-Lipschitz within the unit ball. To extend this result, for any
given pair of points x, y we construct a set of unit balls intersecting on the edges and use the triangle
inequality, tending ε towards zero to show our function is σmax-Lipschitz. Multiplying the denominator
of the fraction yields the desired result. □

Theorem 1 (Consistency) Given the assumptions in part 2, we conclude that the SHADE estimator
satisfies

θ̂SHADE
a.s.−−→ θ∗.

Proof. We define the quantity ∆t = x̄t − x∗, which serves as a precursor to a Lyapunov function ∥∆t∥2
is very similar to the E(θ;x∗) found in Vlatakis-Gkaragkounis et al. We begin by utilizing Lemma A.2.

Et+1 ≤ Et − γt⟨h(xt), xt − x̃⟩ + γtαt + γ2t ψt (Lemma A.3)

Note because F is a strongly monotone operator (Assumption 2), we claim that γt⟨h(xt), xt − x̃⟩ ≥
µEt. Likewise, from lemma A.3, E[αt] is equal to zero. Lastly, via the rate limitations found in both
assumptions one and two,

∑
t≥1 γ

2
t <∞ and

∑
t≥1 ϕ

1−2/p(Bt) <∞. So

Et+1 ≤ Et − γt⟨h(xt), xt − x̃⟩ + γtαt + γ2t ψt ≤ Et + γtαt + κγ2t ψt (B.20)

We have that

Et[Et+1] ≤ Et[Et − γtµEt + γtαt + γ2t ψt]

= Et + γ2t Et[ψt] − γtµEt

≤
n∑

i=1

(1 + Cγ2t σ̃
2
max + Cγ2t σ̃

2
maxB

−1
t )∥xt − x∗∥2

+ Cγ2t σ̃
2
max(1 +B−1

t ) + 4γ2t σ̃
2
maxϕ

1−2/p(Bt)vt + 4Cγtσ̃max

√
ϕ1−2/p(Bt)vt

+ 2γ2t σ̃
2
max

√
ϕ1−2/p(Bt)vt

√
CB−1

t (1 + C2) − γtµ∥xt − x∗∥2

We then note that because
∑

t≥1 γ
2
t < ∞ and that

∑
t≥1 ϕ

1−2/p < ∞, the non-energy parts of the
expression sum over all times t to a finite value. In addition, we have that∑

t≥1

(Cγ2t σ̃
2
max + Cγ2t σ̃

2
maxB

−1
t ) <∞ (B.21)
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Thus we can apply the Robbins-Siegmund theorem to show that Et converges to zero as t tends to
infinity. To show convergence of θ note that from Lemma B.3

σmin∥θt − θ∗∥ ≤ ∥∆t∥ ≤ σmax∥θt − θ∗∥ (B.22)

Thus this implies that ∥θt − θ∗∥2 goes to zero almost surely and the result for the SHADE estimator
follows swiftly. □

C Proof of Asymptotic Normality

For convenience, we restate Theorem 2, and Theorem 3 below. For ease of notation, we define G to be
the Hessian matrix at the optimal latent state x∗, ∇2 f(x∗).

Theorem 2 (Asymptotic Normality of SHADE) Given the assumptions above, the following cor-
respondence occurs

T√∑T
t≥1B

−1
t

(θ̂SHADE − θ∗) → N (0,J(θ∗)+Σ[J(θ∗)+]T )

where Σ = G−1(2r(0) + 4
∑

k≥1 r(k))G−1, G = ∇2 f(x∗) and J(θ∗) is the Jacobian evaluated at the
optimal θ value.

Theorem 3 (Bootstrap Normality) Suppose the assumptions in part 3 hold. Then

T√∑T
t=1B

−1
t

(θ̂∗T − θ̂SHADE)|D L−→ N (0, Σ̂)

where D = {ωi|i ∈ It ∪ Jt} and represents the data used in the empirical risk minimization process,
and Σ̂ = J(θ∗)+G−1(2r(0) + 4

∑
k≥1 r(k))G−1[J(θ∗)+]T is the covariance matrix in Theorem 2
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This section establishes the second criterion needed to reliably use empirical risk minimization,
that of asymptotic normality. Here we leverage the strongly convex geometry of the latent space
to simplify analysis. We show that asymptotic normality in the latent space implies normality in
the control space as well via the use of the delta method. Additionally, we analyse the behaviour
of bootstrap PHGD, and show that its asymptotic distribution is identical to PHGD. To this
end, we use the following arguments.

1. In Lemma 2, we establish an inequality characterizing the evolution of the latent iterates
over time.

2. In Lemma C.1-C.2 we equate the time-averaged parameter estimates with scaled gradients
of the loss function. This is similar to the strategy undertaken by Polyak [1990a] and Liu
et al. [2023]. To achieve this, we exploit the strongly convex nature of the objective in the
latent space to create sharp bounds.

3. In Lemma C.3, we show that the sum of the autocorrelation coefficients is finite and conclude
via the Lindeberg condition that the sum of gradients exhibits asymptotic normality.

4. In Theorem 3, the bootstrap estimates are shown to match the distribution of PHGD.
Leveraging the requirements in Assumption 3 and a theorem from Kuczmaszewka, we can
apply Theorem 2 to achieve the desired result.

C.1 Latent Descent Inequality: Similar to the equation governing stochastic gradient descent,
we derive the following for the latent iterates.

Lemma 2 (Descent Equality) Let xt = χ(θt), we then have that for iterates of PHGD

xt+1 = xt − γtUt∇f(xt; Ω) + γ2t U
2
t O(∥θt − θt−1∥2).

Proof. We show this lemma via Taylor’s theorem. Recall that

xt+1 = χ(θt+1)

= χ(θt − γtUtPtVt)

= χ(θt) − γtJθtPtUtVt + γ2t U
2
t O(∥θt − θt−1∥2)

= χ(θt) − γtJθtPtJ
T
θtUt∇ f(xt; Ωt−1) + γ2t U

2
t O(∥θt − θt−1∥2)

= xt − γtUtĝt + γ2t U
2
t O(∥θt − θt−1∥2)

So the desired claim has been shown. □

C.2 Establishment of Asymptotic Normality:

So far our analysis has dwelt on bounding terms of the martingale loss gradient. To proceed,
we establish a correspondence between these terms and the parameter estimates through lemmas
found in Polyak [1990a]. By unrolling the iteration sequence into a product of terms dictated by
the hessian, we extend our gradient bounds to the iteration parameters themselves.

We begin with a few key propositions regarding the evolution of the descent process.

26



Proposition C.1 Let G be a positive definite matrix, and define the following.

Dj
j = I

Dt
j = (I − γt−1G)Dt−1

j = ... =
t−1∏
k=j

(I − γkG)

D̄t
j = γj

t−1∑
i=j

Di
j

Then we have that

(i) There are constants C > 0 such that ∥D̄t
j∥ ≤ C

(ii) limt→∞
1
t ∥D̄

t
j −G−1∥ = 0

(iii) ∥Dt
j∥ ≤ exp(λG

∑t−1
k=j(k + γ)−ρ), where λG is the largest eigenvalue of G.

(iv) Let {aj}∞j=0 be a positive and non-increasing sequence, such that
∑

j≥0 alphaj = ∞, and tρ/
∑t

j=1 aj →
0, then limt→∞

∑t
j=1 aj∥D̄t

j −G−1∥/(
∑t

j=1 aj) = 0

Proof. The proof for (i) and (ii) can be found in Polyak and Juditsky [1992a], (iii) can be found in Chen
et al. [2020] and (iv) is in Liu et al. [2023]. □

Lemma C.1 Under assumptions 1-2 and Model 1, it holds that

1

T

T∑
t=1

t∑
j=1

[
t∏

k=j+1

(I − γkG)]γt(ζj) =
1

T

T∑
t=1

G−1Ut(∇f(x∗; Ωt)) +Rn

where E ∥Rn∥2 = O(
∑T

t=1 B
−1
j

T 2 )

Proof. This is Lemma S.21 in Liu et al. [2023]. □

With these lemmas, we can craft the following correspondence.

Lemma C.2 We have the following correspondence.

1

T

T∑
t=1

xt − x∗ =
1

T

T∑
i=1

G−1Ut∇ f(x∗; Ωt) + oP (

√∑T
t=1B

−1
t

T
)

Proof. We being by rearranging the gradient term.

xt+1 = xt − γt[h(xt) + et + ζt] + γ2tO(∥θt − θt−1∥2) (C.1)
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We now aim to separate this into terms that can be bounded. If we define ∆t = (xt − x∗) we can see
that

∆t+1 = ∆t − γt[h(xt) − et − ζt] + γ2tO(∥θt − θt−1∥2)
= ∆t − γtG∆t − γt(et + ζt) − γt(h(xt) −G∆t) + γ2tO(∥θt − θt−1∥2)
= (I − γtG)∆t − γt(et + ζt) − γt(h(xt) −G∆t) + γ2tO(∥θt − θt−1∥2)

= [
t∏

j=1

(I − γj)]∆0 +
t∑

j=1

[
t∏

k=j+1

(I − γkG)]γt(ej + ζj)

+

t∑
j=1

[

t∏
k=j+1

(I − γkG)]γt(h(xt) −G∆t) + γ2tO(∥θt − θt−1∥2)

Thus we now look at the average value of ∆t. We see that

1

T

T∑
t=1

∆t =
1

T

T∑
t=1

[
t∏

j=1

(I − γj)]∆0 +
1

T

T∑
t=1

t∑
j=1

[
t∏

k=j+1

(I − γkG)]γt(ej + ζj)

+
1

T

T∑
t=1

t∑
j=1

[

t∏
k=j+1

(I − γkG)]γt(h(xt) −G∆t) +
1

T

T∑
t=1

γ2tO(∥θt − θt−1∥2)

=
1

T

T∑
t=1

[
t∏

j=1

(I − γj)]∆0 +
1

T

T∑
t=1

t∑
j=1

[
t∏

k=j+1

(I − γkG)]γt(ej)

+
1

T

T∑
t=1

t∑
j=1

[
t∏

k=j+1

(I − γkG)]γt(ζj)

+
1

T

T∑
t=1

t∑
j=1

[

t∏
k=j+1

(I − γkG)]γt(h(xt) −G∆t) +
1

T

T∑
t=1

γ2tO(∥θt − θt−1∥2)

= S1 + S2 + S3 + S4 + S5

We see from Lemma 2that S1 is asymptotically oP (

√∑T
j=1 B

−1
j

T ). We now aim to bound S2. We define

QT
j =

∑T
t=j [
∏t

k=j+1(I − γkG)]γj . Using Lemma 2 again, we have that ∥QT
j ∥ < C. Then applying

Lemma B.1, we have that

E(∥S2∥) ≤ 1

T

T∑
j=1

∥QT
j ∥E[∥et∥] ≤ C

T

T∑
j=1

ϕ1/2−1/p(Bj) = o(

√∑T
j=1B

−1
j

T
) (C.2)

If we use Taylor expansion and the fact that the Jacobian has bounded spectra, we have that

∥h(xt) −G∆t∥ = ∥h(x∗) +G(xt − x∗) −G(xt − x∗) +O(∥xt − x∗∥2)∥ ≤ C · ∥xt − x∗∥2 (C.3)
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Thus armed with this we can

E[S4] ≤
1

T

∑
{j:∥∆j−1∥2≤δ∥}

E[∥∆j−1∥2]

+
1

T

∑
{j:∥∆j−1∥2≤δ∥}

T∑
t=j

[
t∏

k=j+1

(I − γkG)]γt E ∥h(xt) −G∆t∥

≤
∑T

t=1 γt
T

+
1

T

= o(

√∑T
j=1B

−1
j

T
)

This follows because ∆t → 0 almost surely, thus the set of all j such that ∥∆j∥2 < δ is finite almost
surely. Thus the second term of the sequence will be dominated by the 1

T term.
Lastly looking at S5 we see that because θt → θ∗ almost surely, we have that this term vanishes on

order 1
T . Thus using lemma B.3, we conclude that

1

T

∑
t=1

xt − x∗ =
1

T

T∑
t=1

G−1∇ f(x∗; Ωt) + oP (

√∑T
t=1B

−1
t

T
).

□

We now lay out asymptotic normality claims. Throughout this section, we will refer to r(t) the
autocorrelation coefficient defined as follows.

Definition 2 (Autocorrelation Coefficients) Let L(θ; Ω) be a stochastic loss function satisfying the
assumptions laid out in Assumption 1. Then we define

r(t) = E[∇L(θk+t; Ωk+t)∇L(θk; Ωk)T ]

We now recall a result from Fan and Yao [2003], which ensures the autocorrelation coefficients do
not grow too large in a ϕ−mixing sequence.

Lemma C.3 Under the assumptions in part 3, we conclude that if r(t) is defined as above. Then∑
t≥1

∥r(t)∥ <∞.

Proof. In Theorem 2.20 of Fan and Yao [2003], the authors claim the sum of the autocorrelation
coefficients r(t) is bounded throughout time for an α−mixing (strong mixing) sequence. Using the
relationship between ϕ−mixing and strong mixing sequences found in Bradley [2005], we can conclude
the desired claim. □

We show asymptotic normality through use of the Lindeberg condition.
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Theorem C.1 (Lindeberg Condition) Let (Ω,F ,P) be a probability space and Xk : Ω → Rn, k ∈ N
be independent random variables. Suppose E[Xk] = µk and Var(Xk) = σ2k <∞. Then if s2n =

∑n
k=1 σ

2
n

and the sequence {Xk}∞k=1 satisfies

lim
n→∞

1

s2n

n∑
k=1

E[(Xk − µk)2 · 1{|Xk − µk| > ϵsn}]

Then

Yn =

∑n
k=1(Xk − µk)

sn
→ N (0, 1)

Proof. The proof can be found in Brown [1971]. □

With this key tool, we now outline our proof of asymptotic normality.

Lemma C.4 Given the assumptions in part 3, we claim that

1∑T
t=1B

−1
t

T∑
t=1

ĝi∗t + ĝj∗t → N (0, V ).

when V = 2r(0) + 4
∑

k≥1 r(k)

Proof. We only prove this fact for the one-dimensional case. A multivariate extension can be made via
a Cramer-Wold device. For ease of notation, we have that ∇f(x∗; Ωi

t) = ĝi∗t ,∇f(x∗; Ωj
t ) = ĝj∗t We see

that the second moment of this expression can be expressed as

E[∥
T∑
t=1

ĝi∗t + ĝj∗t ∥2] =

=
T∑
t=1

E[∥ĝi∗t + ĝj∗t ∥2] + 2
t−1∑
t=1

E[∥(ĝi∗t + ĝj∗t ) · ĝi∗t+1 + ĝj∗t+1∥
2]

+ 2
T−2∑
t=1

T∑
k=t+2

E[∥(ĝi∗t + ĝj∗t ) · (ĝi∗k + ĝj∗k )∥2]

:= S1 + S2 + S3

We now aim to bound these expressions via our assumptions on the ϕ−mixing nature of these sequences.
When t > k + 1, the index differences between It and Jk are at least Bt−1 apart. Thus we can use
lemma 4 to see that

E[ĝ∗t · ĝ∗k] ≤ Cpϕ
1−2/p(Bt−1)E2/p[|ĝ∗t · ĝ∗k|p/2]

≤ Cpϕ
1−2/p(Bt−1)E1/p[|ĝ∗t ]E1/p[ĝ∗k]

≤ Cpϕ
1−2/p(Bt−1)B

−1/2
t B

−1/2
k

The last inequality results from lemma 3, bounding the moment of the gradient sequence. An analogous
result holds for when k > t+ 1

E[ĝ∗t · ĝ∗k] ≤ Cpϕ
1−2/p(Bt−1)B

−1/2
t B

−1/2
k
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Combining the above, we conclude.

S3 ≤ 2C
T−2∑
t=1

T∑
k=t+2

Cpϕ
1−2/p(Bt−1)B

−1/2
t B

−1/2
k ≤ 2C

T−2∑
t=1

B−1
t

T∑
k=t+2

ϕ1−2/p(Bk−1) (C.4)

Thus using Lemma S.7 in Liu et al. (about convergence of fractions of sequences), we see that this term
is oP (

∑T
t=1B

−1
t ).

We now define vs = ∇f(x∗;ωs), Dt = It ∪ Jt and r(t) = E[∇f(x∗;ωs)∇f(x∗;ωs)]. Thus we see that

2

t−1∑
t=1

E[∥ĝ∗t · ĝ∗t+1∥2] = 2

t−1∑
t=1

1

BtBt+1
E[(
∑
s∈It

vs)(
∑

k∈St+1

vk)]

= 2

t−1∑
t=1

1

BtBt+1

∑
s∈It

∑
k∈St+1

E[vsvk]

= 2

t−1∑
t=1

1

BtBt+1

2Bt−1∑
s=0

2Bt+1∑
k=1

r(s+ k)

= 2

t−1∑
t=1

1

BtBt+1

2Bt+1∑
k=1

k+2Bt−1∑
m=k

r(m)

Thus by because limt→∞
∑t

k=1 ∥r(k)∥ <∞, we have that asymptotically,

lim
t→∞

1

2Bt+1

2Bt+1∑
k=1

∞∑
m=k

∥r(m)∥ = 0 (C.5)

Then we see via Liu lemma 6 that this term is asymptotically o(
∑

t≥1B
−1
t )

In a similar vein we look at the term S1. This term can also be represented as the following

t−1∑
t=1

E[∥ĝ∗t · ĝ∗k∥2] =

T∑
t=1

1

B2
t

E[(
∑
s∈It

vs)(
∑
k∈St

vk)]

=

T∑
t=1

1

B2
t

∑
s∈It

∑
k∈St

E[vsvk]

=
T∑
t=1

1

B2
t

∑
s∈It

∑
k∈St

E[vsvk]

=

T∑
t=1

1

B2
t

(2Btr(0) + 2

2Bt∑
k=1

(2Bt − k)r(k))

=
T∑
t=1

2

Bt
(r(0) + 2

2Bt∑
k=1

(1 − k

2Bt
)r(k))

:=

T∑
t=1

2

Bt
βt
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Thus because we have that
∑

k≥0 ∥r(k)∥ < ∞. we can apply the dominated convergence theorem to
claim that limt→∞ βt = r0 + 2

∑
k≥0 r(k). Thus putting this all together we can see that

lim
T→∞

S1∑T
t=1B

−1
t

= lim
T→∞

2

∑T
t=1B

−1
t βt∑T

t=1B
−1
t

= 2r(0) + 4
∑
k≥1

r(k) (C.6)

We now gear up to prove the normality theorem. Define the quantity VT,t = (ĝi∗t + ĝj∗t )/
√∑T

k=1B
−1
k .

We have just shown that

v2T := E[|
T∑
t=1

VT,t|2] → 2r(0) + 4
∑
k≥1

r(k) (C.7)

Thus we know that v2T ≥ c2 for some value c > 0.

E[|VT,t|21{|VT,t| > evT }] ≤
(εvT )2 E[|VT,t|p]

(εvT )p
(C.8)

We get this via Markov’s inequality. We then apply lemma three to arrive at

(εvT )2 E[|VT,t|p]
(εvT )p

≤ CpB
−p/2
t

(cε)p−2(
∑t

j=1B
−1
j )

(C.9)

Thus combining this all together we satisfy the Lindeberg condition.

1

v2T

T∑
t=1

E[|VT,t|21{|VT,t| > evT }] ≤
C
∑T

t=1B
−p/2
t∑T

t=1B
−1
t

→ 0 (C.10)

The final equality is due to lemma. □

To establish Theorem 2, we recall a useful lemma.

Lemma C.5 If
√
n(Xn − µ)

d−→ N (0,Σ) and f : Rd → Rk, then via Taylor expansion we claim

√
n(f(Xn) − f(µ))

d−→ N (0, Jacf (µ)Σ Jacf (µ)T )

Proof. This proof can be shown using the Central Limit theorem and Taylor’s theorem. A full proof
can be found [Keener, 2010]. □

Theorem 2 (Asymptotic Normality of SHADE) Given the assumptions above, the following cor-
respondence occurs

T√∑T
t≥1B

−1
t

(θ̂SHADE − θ∗) → N (0,J(θ∗)+Σ[J(θ∗)+]T )

where Σ = G−1(2r(0) + 4
∑

k≥1 r(k))G−1, G = ∇2 f(x∗) and J(θ∗) is the Jacobian evaluated at the
optimal θ value.
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Proof. Given lemma B.4, we have that

T−1
T∑
t=1

xit − x∗ =
1

T

T∑
t=1

G−1ĝi∗t + oP (

√∑T
t=1B

−1
t

T
) (C.11)

T−1
T∑
t=1

xjt − x∗ =
1

T

T∑
t=1

G−1ĝj∗t + oP (

√∑T
t=1B

−1
t

T
) (C.12)

Then applying Lemma C.4 we can conclude.

1

2
T−1(

T∑
t=1

xit + xjt ) − x∗ → N (0,Σ)

Applying the delta method results in the desired claim. □

Proof. This proof can be shown using the Central Limit theorem and Taylor’s theorem. A full proof
can be found [Keener, 2010]. □

The following corollary can be directly claimed from these results.
C.3 Bootstrap Normality We conclude with an asymptotic normality proof for the bootstrap

iterates. Formally we claim,

Theorem 3 (Bootstrap Normality) Suppose the assumptions in part 3 hold. Then

T√∑T
t=1B

−1
t

(θ̂∗T − θ̂SHADE)|D L−→ N (0, Σ̂)

where D = {ωi|i ∈ It ∪ Jt} and represents the data used in the empirical risk minimization process,
and Σ̂ = J(θ∗)+G−1(2r(0) + 4

∑
k≥1 r(k))G−1[J(θ∗)+]T is the covariance matrix in Theorem 2

Proof. In this proof, we follow the outline of Theorem 3 from Liu et al. [2023]. Define vt = ĝ∗it + ĝ∗jt ,
and χ(θ̂SHADE) = x̄∗T . Then we claim that

T√∑T
t=1B

−1
t

(x̄∗T − x̄T ) =
1√∑T

t=1B
−1
t

T∑
t=1

1

2
(Ut − 1)G−1(ĝ∗it + ĝ∗jt ) + oP (1)

=
1√∑T

t=1B
−1
t

T∑
t=1

1

2
(Ut − 1)G−1vt + oP (1)

To show asymptotic normality we observe the limiting behavior of YT :=
∑T

t=1(Ut − 1)vt/
√∑T

t=1B
−1
t .

Define B to be the unit ball in Rd, i.e. {w ∈ Rd : ∥w∥ = 1}. Because the Ut random variables have unit
mean and unit variance, we verify that

E[|βTYT |2] = βT

(
T∑T

t=1B
−1
t

T∑
t=1

vtv
T
T

)
β
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Moreover, we cap the variance of vtv
T
t with Lemma 2 and assumption 3, we see that

E[∥vtvTt − E(vtv
T
t )∥2] ≤ E[∥vt∥4] ≤ CB−2

t

as the sequence vt is ϕ−mixing. Furthermore, using the rate-limiting assumptions in assumption 3 we
see that

T∑
t=1

E ∥vtvTt − E(vtv
T
T )∥2

(
∑t

j=1B
−1
j )2

≤ C

∞∑
t=1

B−2
t

(
∑t

j=1B
−1
j )2

≲
∞∑
t=1

B−2
t t−2ρ <∞.

Then using Corollary 1 from Kuczmaszewka we see that this value is consistent.

1∑T
t=1B

−1
t

T∑
t=1

[vtv
T
t − E(vtv

T
t )]

a.s.−−→ 0

So using the properties of strong convexity, the sample covariance matrix converges almost surely to
the true covariance.

VT :=
1∑T

t=1B
−1
t

T∑
t=1

E(vtv
T
t ) → 2r(0) + 4

∞∑
k=1

r(k) := V

Thus we can conclude that βTVTβ converges uniformly to βTV β for all β ∈ B.

Likewise, looking at the Lindeberg condition, we can see

gT (β) : =
1

βTVTβ
∑T

j=1B
−1
j

T∑
t=1

E

|(Ut − 1)βT vt|2I

|(Ut − 1)βT vt| > ϵβTVTβ
T∑

j=1

B−1
j ]

 (C.13)

≤
∑T

t=1 E[(Ut − 1)βT vt|4]
ϵ2(βTVTβ)2(

∑T
j=1B

−1
j )2

(C.14)

≤
C
∑T

t=1 ∥vt∥4

ϵ2λmin(VT )(
∑T

j=1B
−1
j )2

(C.15)

So because the sample covariance converges almost surely to the true covariance. We claim that
limt→∞ P(λmin(VT ) ≥ λmin(V )/2) = 1. Thus we conclude that

P(gT (β) > δ,∀β ∈ B) (C.16)

≤
C
∑T

t=1 ∥vt∥4

δϵ2λmin(V )(
∑T

j=1B
−1
j )2

+ P(λmin(V ) < λmin(V )/2) (C.17)

≤
C
∑T

t=1B
−2
t

δϵ2λmin(V )(
∑T

j=1B
−1
j )2

+ P(λmin(V ) < λmin(V )/2) → 0 (C.18)

The last convergence comes from lemma S.6 of Liu et al. Thus we have shown the Lindeberg condition
is satisfied and can conclude that Yt|Dt → N (0, V ). Thus applying Lemma B.5, Theorem 2, and the
delta method the claim is proven. □
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